

EFFETTI DEGLI INTERVENTI DI RIQUALIFICAZIONE SULLA COMUNITÀ BENTONICA IN UN FIUME URBANO

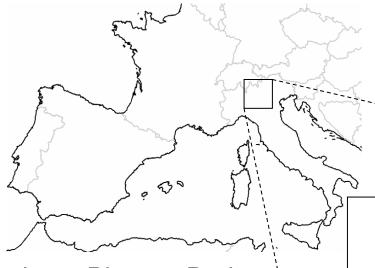
Almudena Idigoras, Daniele Demartini e David Armanini Riverment S.r.l. (Milano)

RIVERMENT

Intervento di riqualificazione in un tratto del torrente Seveso situato all'interno del Parco Nord Milano

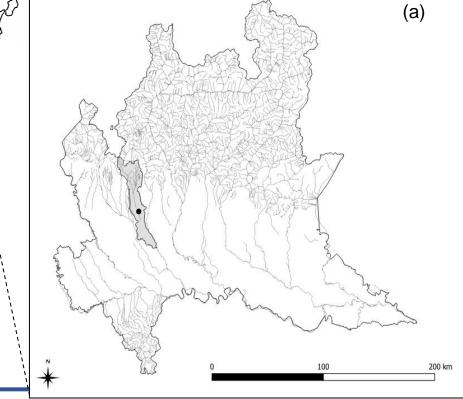
Intervento cofinanziato da Fondazione Cariplo all'interno del

Progetto: "La fine del Seveso"



Inizio Progetto: 2012 Realizzazione: 2014

Monitoraggio dell'intervento: 2012-2016


•Idro-ecoregione: Pianura Padana

•Bacino: 227 Km²

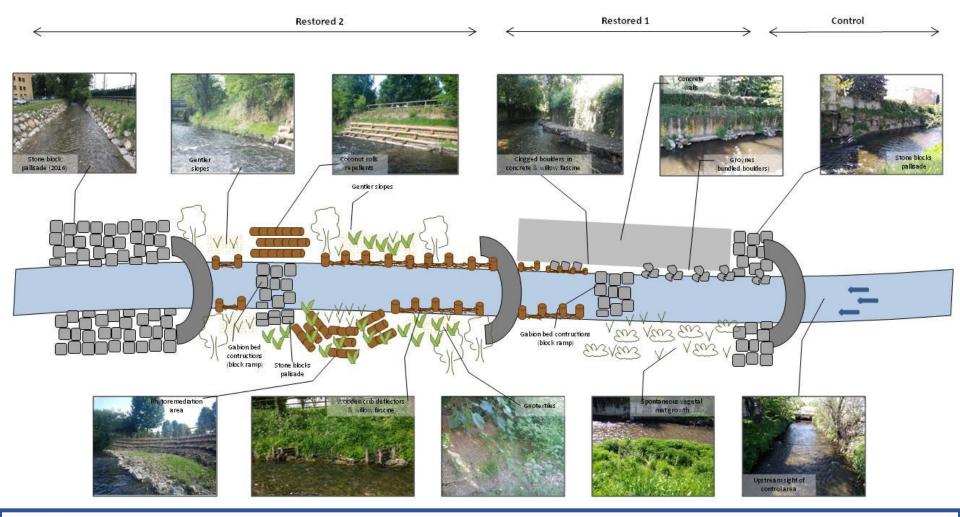
•Lunghezza Seveso: 52 Km

 Uso del territorio: In prevalenza urbano e agricolo

•Tratto riqualificato: 700m – Parco Nord Milano (Cormano)

 Sponde rinforzate con muri di contenimento verticali in calcestruzzo

•Restringimento dell'alveo



 Elevate velocità + allagamenti delle aree adiacenti + erosione locale

 Ripristino della vegetazione sulle sponde e in alveo

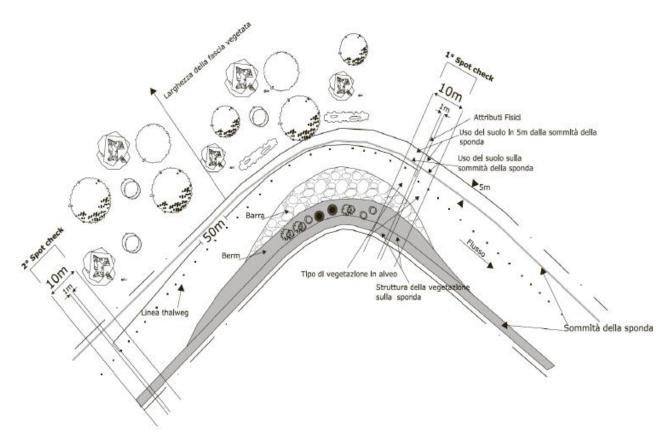
•Introduzione di elementi di bioingegneria sulle sponde (e.g. palizzate, fascinata spondale viva,) e nel canale (e.g. repellenti in rullo di cocco, massi vincolati)

 Creazione di un'area di fitodepurazione

Dati di Habitat/Idromorfologia

Dati biologici

Dati ambientali


Dati raccolti:

- Prima dell'intervento nel 2012
- Dopo l'intervento dal 2014 al 2016

Idromorfologia/Habitat

Metodo CARAVAGGIO (Core Assessment of River hAbitat Value and Hydromorphological COndition) – Rilevamento di caratteristiche relative agli habitat fluviali e ripari su un tratto di 500 m

Idromorfologia

Metodo CARAVAGGIO (Core Assessment of River hAbitat Value and Hydromorphological COndition) – Rilevamento di caratteristiche relative agli habitat fluviali e ripari su un tratto di 500 m

Per adattarlo al monitoraggio dell'intervento transetti posizionati ogni 25 m invece che 50 m Tre applicazioni da 250 m

Indici calcolati attraverso il Software CARAsoft:

- ➤ Land Use Index (LUIcara) Uso del territorio sulle sponde e area circostante
- ➤ Habitat Quality Assessment (HQA) Diversificazione e naturalità degli habitat del corso d'acqua
- ➤ Habitat Modification Score (HMS) Grado di alterazione morfologica in termini di elementi artificiali

Biologia (DM 260/2010)

Protocollo multihabitat proporzionale per il campionamento dei macroinvertebrati bentonici in fiumi guadabili

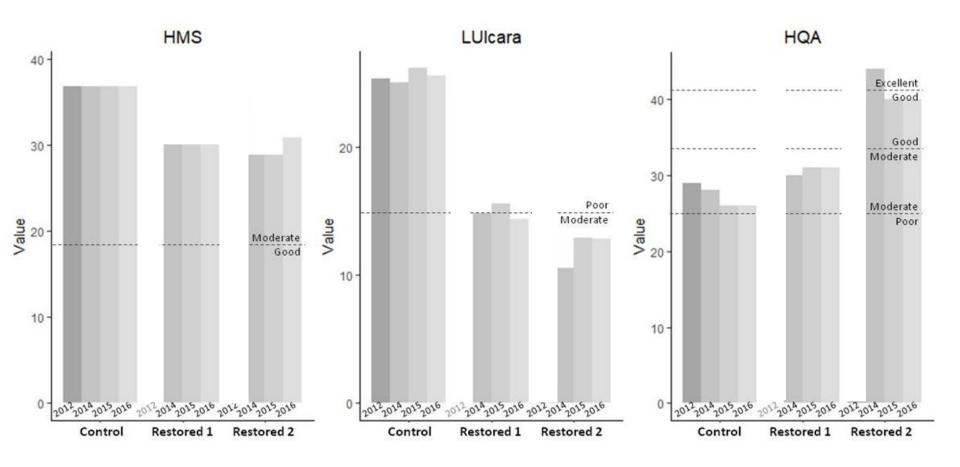
- ➤ STAR ICMi
- ➤Indici di di similarità, Diversità di Shannon, numero di famiglie EPT, % famiglie EPT, EPT/Chironomidae, 1-GOLD, ...,

Dati ambientali

Chimica (DM 260/2010)

- Fosforo totale, Azoto ammoniacale, Azoto nitrico, Ossigeno disciolto Livello idrometrico orario
 - ➤ Media giornaliera
 - ➤ Media e Massima 3 mesi precedenti

Obiettivi


•È cambiata la qualità dell'habitat dopo la riqualificazione?

 La comunità biologica sta cambiando in risposta all'intervento o cambia stocasticamente nel tempo?

 Quali sono gli elementi chiave nel cambiamento della comunità biologica?

Valutazione idromorfologica/ habitat

Valutazione idromorfologica/ habitat

Caratterizzazione idromorfologica

Analisi descrittiva degli indici idromorfologici

 È stato efficace l'intervento di riqualificazione?

1-factor ANOVAs (*p*<0.05): Comparazione temporale degli indici idromorfologici tra siti dopo l'intervento

Valutazione idromorfologica/ habitat

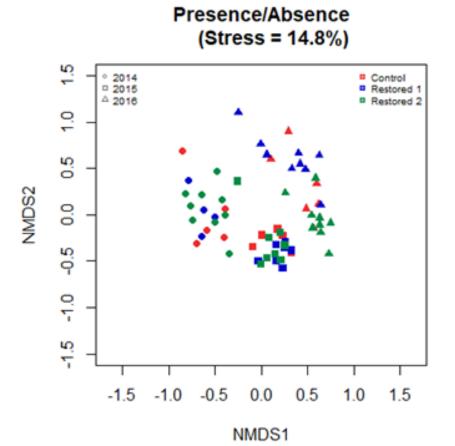
								HMS							
	Control Vs. Restored1					Control Vs. Restored2				Restored1 Vs. Restored2					
	DF	SS	MS	F	р	DF	SS	MS	F	р	DF	SS	MS	F	p
Site	1	68.57	68.57	2.01E+31	0.00	1	720.00	720.00	234.00	0.00	1	1097.00	1097.00	310.90	0.00
Residuals	68	0.00	0.00			78	240.00	3.10			68	240.00	3.50		
	LUIcara														
	DF	SS	MS	F	p	DF	SS	MS	F	р	DF	SS	MS	F	p
Site	1	1932.50	1932.50	8826.00	0.00	1	3358.00	3358.00	3578.00	0.00	1	93.80	93.80	86.52	0.00
Residuals	68	14.90	0.20			78	73.00	1.00			68	73.72	1.08		
								HQA							
	DF	SS	MS	F	р	DF	SS	MS	F	р	DF	SS	MS	F	p
Site	1	200.12	200.12	183.50	0.00	1	4061.00	4061.00	1785.00	0.00	1	2011.00	2011.90	1173.00	0.00
Residuals	68	74.17	1.09			78	178.00	2.00			68	116.70	1.70		

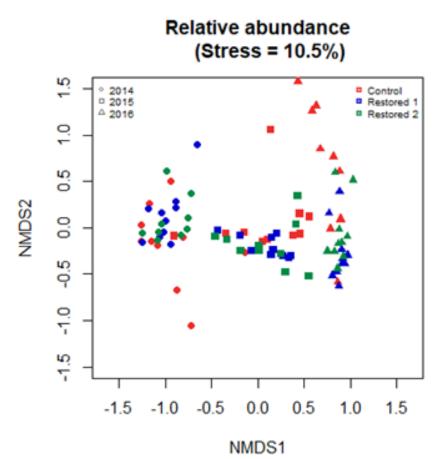
Variabilità biologica Post-Intervento

- Esistono differenze tra le comunità biologiche nei siti negli anni successivi all'intervento di riqualificazione?
- 2-factor PERMANOVAs
 - Composizione (presenza/assenza & abbondanza relativa)

Differenza significative tra siti e anni diversi

		Presence/Absence							
	DF	SS	MS	F	R ²	p			
Site	2	0.32	0.16	2.26	0.03	0.05			
Year	1	4.98	4.98	70.54	0.44	0.00			
Site*Year	2	0.18	0.09	1.25	0.02	0.28			
Residuals	84	5.94	0.07		0.52				
Total	89	11.42			1.00				

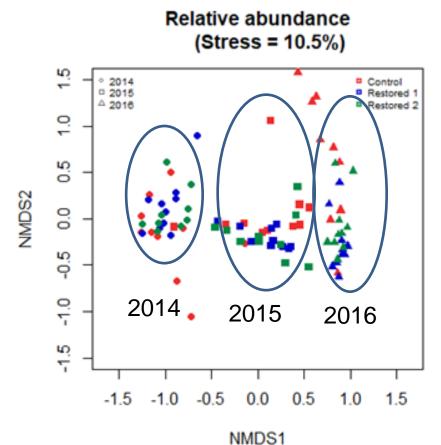

		Relative abundance							
	DF	SS	MS	F	R ²	р			
Site	2	0.70	0.35	3.40	0.04	0.01			
Year	1	9.67	9.67	93.72	0.49	0.00			
Site*Year	2	0.66	0.33	3.22	0.03	0.01			
Residuals	84	8.66	0.10		0.44				
Total	89	19.70			1.00				



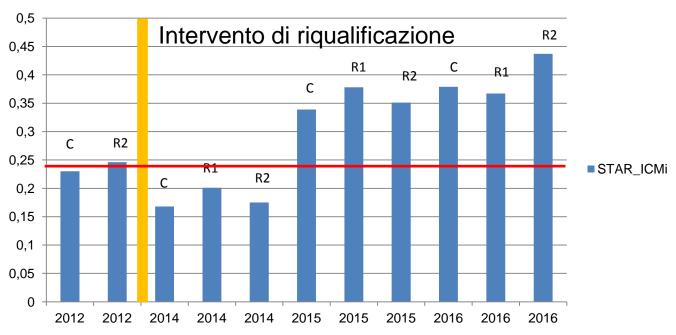
Variabilità biologica Post-Intervento

nMDS

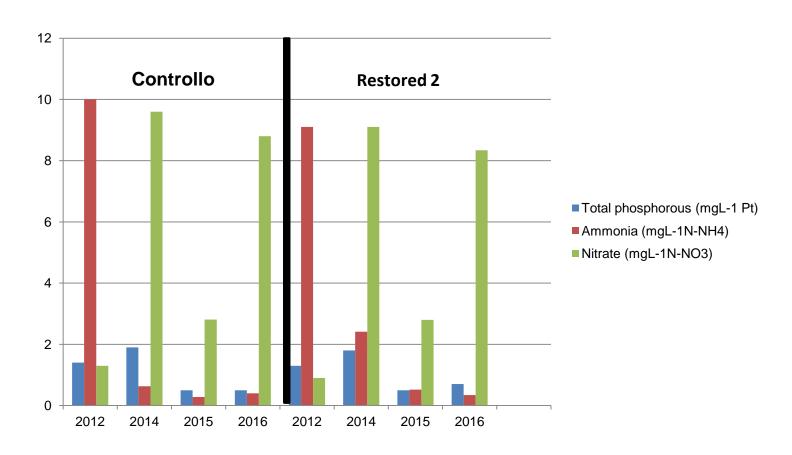
➤ Composizione (presenza/assenza & abbondanza relativa)



Variabilità biologica Post-Intervento



Variabilità biologica Post-Intervento


 Esistono differenze tra le comunità biologiche nei siti negli anni successivi all'intervento di riqualificazione?

STAR_ICMi

Biologia Vs. Ambiente

Biologia Vs. Ambiente

- Esiste relazione diretta tra i cambiamenti nella biologia e i fattori ambientali ed idromorfologici?
- Partial Least Squares regressions (PLS)
- \triangleright Significative quando $Q^2_Y > 0.0975$

Il modello PLS è significativo $(Q_v^2 = 0.311)$

Biologia Vs. Ambiente

VIP (Variance Importance in the Projection)

Informazione delle variabili ambientali rilevanti nel modello tenendo in conto la quantità di variabilità biologica spiegata per ogni variabile latente.

➤ Potere predittivo forte quando VIP>1

Biologia Vs. Ambiente

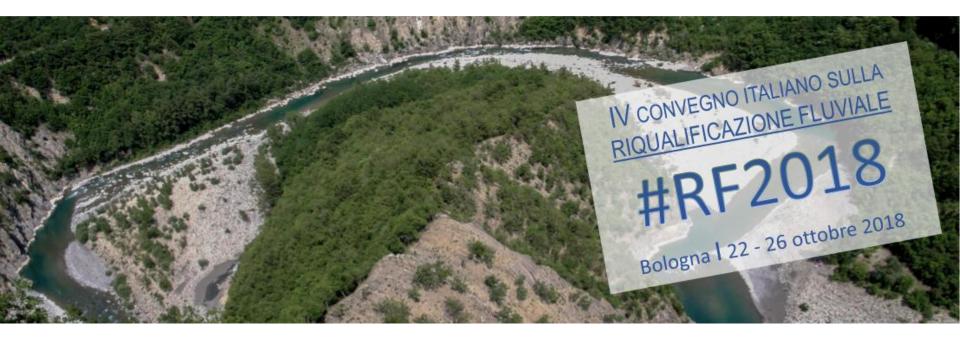
Water quality parameters	VIP (t1)	Shannon	# EPT	% EPT	EPT/Chiro	1-GOLD
Total phosphorous (μg/L P _t)	1.420*	3.60	0.98	-4.48	-1.13	1.06
Ammonia (mg/L N-NH ₄)	1.150*	0.93	-0.03	-1.27	-0.74	0.29
Nitrate (mg/L N-NO₃)	0.977	-0.80	-0.27	1.40	0.20	0.18
Hydromorphological variables	VIP (t1)	Shannon	# EPT	% EPT	EPT/Chiro	1-GOLD
HMS	0.123	0.10	-0.04	-0.45	0.09	0.09
LUIcara	0.664	2.60	0.53	-2.62	-1.25	0.23
HQA	0.218	2.04	0.41	-2.37	-0.62	0.14
Hydrometric levels	VIP (t1)	Shannon	# EPT	% EPT	EPT/Chiro	1-GOLD
Summer average	1.418*	5.08	1.45	-6.21	-1.72	-0.50
Summer maximum	1.409*	-8.13	-2.67	9.08	1.98	-1.41
Daily average	0.455	1.09	0.46	-1.35	-1.15	0.68

Biologia Vs. Ambiente

Water quality parameters	VIP (t1)	Shannon	# EPT	% EPT	EPT/Chiro	1-GOLD
Total phosphorous (μg/L P _t)	1.420*	3.60	0.98	-4.48	-1.13	1.06
Ammonia (mg/L N-NH ₄)	1.150*	0.93	-0.03	-1.27	-0.74	0.29
Nitrate (mg/L N-NO ₃)	0.977	-0.80	-0.27	1.40	0.20	0.18
Hydromorphological variables	VIP (t1)	Shannon	# EPT	% EPT	EPT/Chiro	1-GOLD
HMS	0.123	0.10	-0.04	-0.45	0.09	0.09
LUIcara	0.664	2.60	0.53	-2.62	-1.25	0.23
HQA	0.218	2.04	0.41	-2.37	-0.62	0.14
Hydrometric levels	VIP (t1)	Shannon	# EPT	% EPT	EPT/Chiro	1-GOLD
Summer average	1.418*	5.08	1.45	-6.21	-1.72	-0.50
Summer maximum	1.409*	-8.13	-2.67	9.08	1.98	-1.41
Daily average	0.455	1.09	0.46	-1.35	-1.15	0.68

Conclusioni

- L'analisi degli indici di habitat indica che la riqualificazione ha ridotto gli impatti antropici nel corridoio ripario e ha diversificato gli habitat nel canale
- La variazione temporale e spaziale nella comunità bentonica è significativa dopo l'intervento
 - La variazione temporale è la più importante.
- Le variabili idromorfologiche sono efficaci nel differenziare le diverse misure di riqualificazione ma non mostrano una capacità predittiva sulla comunità bentonica, sicuramente dovuto alle caratteristiche del fiume
 - Altri fattori sono più importanti (Chimica-idrologia)



Considerazioni finali

- Gli interventi di riqualificazione si sono dimostrati efficaci nel migliorare la qualità degli habitat.
- Perchè gli effetti della riqualificazione possano essere evidenti sulle biocenosi è necessario migliorare la qualità dell'acqua.
- Le indagini dovrebbero essere condotte per un periodo più lungo e l'intervento maggiormente esteso

Grazie per l'attenzione

a.idigoras@riverment.com d.demartini@riverment.com d.armanini@riverment.com

